

    
        
        
    



    

    





    
        
    
        
            
                
                    
                    
                    
                
            
        

    


    
        
            Thanks for visiting DZone today,

            
                
                    
                    
                
                
                    
                        
                        Edit Profile
                    

                    	Manage Email Subscriptions
	
                            
                                How to Post to DZone
                            
                        
	
                            
                                Article Submission Guidelines
                            
                        


                    
                        Sign Out
                        View Profile
                    

                

            


            
                
                    Post
                    
                

                
                    
                        	
                                
                                Post an Article
                            
	
                                Manage My Drafts
                            


                    

                

            

        


        
            Over 2 million developers have joined DZone.

            
                Log In
                /
                Join
            

            
        

        
            
        

    


    

    
        
            Refcards
            Trend Reports
            
                Events
                Video Library
            

        

    

    
        
            Refcards
        

        

        
            Trend Reports
        

        

        
            Events

            
                
                    View Events
                    Video Library
                

            

        

    







  




    

  

    

        
            
                
  	DZone
	Refcards
	Core Mule


                

            


            
                
                


                
                    
                

            


            
                
                    Refcard #036
                    Core Mule

                

            

        

        
            
                
                      Mule in a Nutshell

                    Summarizes the Mule architecture and shows the different routers, transformers, and filters available, including example configurations.

                    
                        
                                
                                    
                                    Free PDF for Easy Reference

                                

                        

                    

                

                
                    
                        
                    
                    
                        
                            
                                Written By

                            

                            
                                    
                                        
                                            
                                        
                                        
                                            
                                                Jos Dirksen
                                            
                                            Software Craftman, Smart Java

                                        
                                    

                            

                        

                    

                

            


            

        

    




    
        
    


    
        
            
                
                    Table of Contents
                    
                


                
                                            
                            ►
                            About Mule Configuration
                        
                        
                            ►
                            Mule Architecture in a Nutshell
                        
                        
                            ►
                            Configuring Mule
                        
                        
                            ►
                            Transformers
                        
                        
                            ►
                            Mule Filters
                        
                        
                            ►
                            Mule Routers
                        
                        
                            ►
                            Mule Comments
                        
                        
                            ►
                            Mule Entry Point Resolving
                        
                

            


                
                    Section 1

                    About Mule Configuration

                    
                        Mule is one of the most mature open source enterprise service busses (ESBs) out there. It provides an easy to use, lightweight ESB that can easily be integrated with a large amount of technologies. Mule also provides a rich set of routers, transformers, and filters which you can use in your own integration flows. This reference card will provide an overview of the architecture of Mule and show the different routers, transformers, and filters that are available, and will show how to use them by using example configurations.

                    

                

                
                    Section 2

                    Mule Architecture in a Nutshell

                    
                        To make it easier to understand Mule, let's first have a quick look at Mule's architecture.

As you can see, the basic concepts of Mule are pretty straight forward. In Mule's architecture we have the following main parts:
	Component	Contains the business logic. For instance this could be a spring bean, a REST service, a POJO, etc.
	Transport	Handles connectivity with a specific technology or application (e.g. JMS, SAP, FTP, etc.).
	Transformers	Transforms the data to the format the next component expects and can work with.
	Inbound Routers	Determines what to do with the received message before it's sent to the service.
	Outbound Routers	Determines where a message needs to be sent to after it's been processed by the service.

Basically what happens is:
	A transport receives a message. For instance a message has been put on a JMS queue the transport is listening on.
	Before the message is sent to the inbound router, it's first transformed (if needed) to the required format.
	Then the message is processed by the inbound router. For instance we could have a "selective consumer" which only accepts messages that are sent by applications we trust.
	After the inbound router, the message is sent to the component, which applies its business logic to it.
	After the service is done processing, the message is sent to the outbound router. This router determines where to next send the message. We could for instance split this message into multiple parts and send those to different targets.
	And finally we can transform the message once again, and let the transport handle all the connectivity details.


                    

                

                
                    Section 3

                    Configuring Mule

                    
                        Mule's configuration is based on Spring and uses XML schemas to provide code completion. This makes it very easy to write your integration flows. Let's start with a very basic Mule configuration:

<mule xmlns="http://www.mulesource.org/
schema/mule/core/2.1" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xmlns:vm="http://
www.mulesource.org/schema/mule/vm/2.1" xmlns:file="http://www.mulesource.org/schema/mule/file/2.1"
xsi:schemaLocation="


        http://www.mulesource.org/schema/mule/core/2.1
        http://www.mulesource.org/schema/mule/core/2.1/mule.xsd
        http://www.mulesource.org/schema/mule/vm/2.1
        http://www.mulesource.org/schema/mule/vm/2.1/mule-vm.xsd
        http://www.mulesource.org/schema/mule/file/2.1
        http://www.mulesource.org/schema/mule/file/2.1/mule-file.xsd">


<model name="refcheat-model">
 <service name="basic-service">
   <
     inbound>
      <file:inbound-endpoint name="example-in"
        path="work/example/in" />
  </inbound>
  <component>
      <singleton-object class="dzone.Reverser" />
  </component>
  <outbound>
     <pass-through-router>
       <file:outbound-endpoint name="example-out"

Configuring Mule, Continued

           path="work/example/out" />
        </pass-through-router>
      </outbound>
    </service>
  </model>
</mule>

You can see that at the top of the file we've declared a number of Mule specific namespaces. Mule provides XML schemas for all its features. We'll focus on Mule core sheets, but also show you a couple of features from the vm and file schemas. After the namespaces declaration we define a <model> element. A model in Mule is a container element for a number of services. In the model element you can see that we've defined a single service where the parts we've discussed in the introduction appear again. In this case we've configured a file transport which will read messages from the file system, pass it on to a component which will reverse the content of the input file, and finally use an outbound router, with a single transport to write the now reversed string back to the file system. We didn't specify an inbound-router. If we don't specify one, all the messages are simply processed by the specified component.
In this example the inbound endpoint uses the File transport. Mule provides several standard transports you can use, as described in the next section. For details on a specific transport, see http://www.mulesource.org/display/MULE2USER/Available+Transports
We won't go into the details of all the endpoints. We'll just provide an overview of the transports available.
Mule Transports
Here is an overview of the transports Mule provides.
	Namespace	Description
	file	Provides endpoints which allow you to read and write to the file system
	axis	Allows you to consume and provide webservices using axis
	jbpm	Adds functionality to interact with jBPM
	cxf	Allows you to consume and provide webservices using CXF
	ejb	Using the endpoints from this transport you can connect to EJBs
	email	The email namespace provides functionality to connect to POP3, SMTP and IMAP servers
	ftp	Provides endpoints to read and write to ftp servers
	http	Allows you to receive and send information using HTTP
	jdbc	With the JDBC endpoints you can interact with databases using SQL
	jms	Provides endpoints to connect to JMS queues and topics
	multicast	Provides an UDP multicast endpoint
	quartz	Allows you to control the quartz job manager from Mule
	rmi	Provides inbound and outbound endpoints for RMI
	stdio	Allows you to send messages to mule using stdio
	tcp	Provides endpoints for tcp connectivity
	udp	Provides endpoints for udp connectivity
	vm	The vm endpoint can be used for internal communication
	xmpp	The XMPP endpoint can be used to connect to XMPP compliant instant messaging servers

Mule Expressions
With expressions Mule allows you to access certain properties from the message or from the payload, and based on these
Mule Expressions, Continued
properties, execute certain actions. There are, for instance, routers, filters, and transformers that work based on these expressions. Below are a couple of examples of how these expressions can be configured. The first one shows how to use an expression on a filter.

<expression-filter evaluator="header" expression="priority=1"/>

This one shows how you can use expressions for routing.

<expression-recipient-list-router
evaluator="xpath"
           expression="/header/routing/recipient" />


Available Evaluators
To use an expression, you specify an evaluator (the expression type) and the expression itself.
	Evaluator	Description
	attachment	Allows you to access an attachment of a message
	attachments	Returns a java.util.Map of attachments
	attachments-list	Returns a java.util.List of attachments objects
	bean	With this property you can access the message using a javabean style
	endpoint	Allows you to access endpoint information
	exception-type	Allows you to match the type of an exception
	function	Performs a function: now, date, datestamp, systime, uuid, hostname, ip, or count. Not supported by expression filters.
	groovy	Evaluates the expression using the Groovy language
	header	Evaluates the specified part of the message header
	headers	Returns all the headers as a java.util.Map
	headers-list	Returns all the headers as a java.util.List of header values
	jxpath	Allows you to specify an XPath expression that works on XML and javabeans
	map-payload	Returns a single value from a Map
	message	Gives you access to various message properties: id, correlationId, correlationSequence, correlationGroupSize, replyTo, payload, encoding, exception
	mule	Allows access to certain Mule properties: serviceName, modelName, inboundEndpoint, serverId, clusterId, domainId, workingDir and homeDir
	ognl	Allows you to use OGNL to access the message
	payload	If expression is provided, it will be a class to be class loaded. The class will be the desired return type of the payload.
	payload-type	Allows you to check the payload-type of the message
	regex	Allows you to use a regular expression to access data
	wildcard	You can use a wildcard expression to determine whether a filter matches
	xpath	Allows you to use an XPath expression


 
 Most elements allow you to configure the expression using the evaluator and expression attributes. For properties, you can specify multiple expressions using #[<evaluator>:<expression>] in Mule 2.1 or ${<evaluator>:<expression>} in Mule 2.0. For example: <message-properties-transformer> <add-property name="GUID" value="#[xpath:/msg/header/ID]-#[xpath:/msg/body/@ref]"/> </message-properties-transformer> For more information on expressions you can look at http://www.mulesource.org/display/MULE2USER/Expressions+Configuration+Reference. 


                    

                

                
                    Section 4

                    Transformers

                    
                        Mule provides a number of transformers which you can use in your own integration flows. Before we look at the transformers provided by Mule, let's first look at how you configure transformers. In the following listings you can see the different ways we can configure and reference a transformer:

<custom-transformer class="dzone.CustomTransformer"
                name="myCustomTransformer"/>
<xml:xslt-transformer name="xsltTransformer"
                xsl-file="resources/xslt/transform.xslt"/>
<file:file-to-string-transformer name="fileToString"/>
...
<file:inbound-endpoint name="example-in"
                path="work/example/in"
transformer-refs="fileToString
                myCustomTransformer xsltTransformer"/>

You can add transformers as a transformers-refs attribute to any endpoint. If you want to do this you first have to make sure you've already defined them. The transformers will be executed in the same sequence as they are listed in the attribute. Note that most of the transports have their own default transformer which is executed if you don't specify transformers yourself. If you do specify transformers yourself you have to make sure you also add the default one, which in this case is the fileToString transformer.

<file:inbound-endpoint name="example-in" path="work/
  example/in">
        <transformer ref="fileToString"/>
        <custom-transformer class="dzone.
     CustomTransformer"/>
        <transformer ref="xsltTransformer"/>
</file:inbound-endpoint>

In the previous listing we added the transformers as child elements of the endpoint. This has the same effect as the previous configuration, but now we don't have to define all the transformers before hand, but can define them inline.

<file:inbound-endpoint name="example-in" path="work/
 example/in">
  <transformers>
   <transformer ref="fileToString"/>
   <transformer ref="myCustomTransformer"/>
   <custom-transformer class="dzone.
     CustomTransformer"/>
  </transformers>
  <response-transformers>
   <base64-encoder-transformer/>
   <transformer ref="stringToFile"/>
 </response-transformers>
</file:inbound-endpoint>

<transformers> element. What you also see is that we've added a response-transformers element (which is also available as an attribute <response-transformers-refs>). A response-transformer does the same as a normal transformer, but is applied specifically on the response to a synchronous call.
Synchronous or asynchronous
 Starting from Mule 2.1 you need to explicitly define whether a message is processed synchronously or asynchronously on both the inbound and outbound endpoints. You can do this by using the synchronous attribute on an endpoint. If you specify synchronous="true" Mule will return a result from the call. If you specify synchronous="false" no result will be returned. This value defaults to false. So by default Mule operates asynchronously. You can, however, override this by adding <configuration defaultSynchronousEndpoints="true"/> to your configuration file.
Available Transformers
The following table lists all the transformers from the Mule core and the Mule XML namespace. They can be used in the manner explained earlier.
	Name	Description
	<append-string-transformer/>	A transformer that appends a string to a string payload
	><auto-transformer>	A transformer that uses the transform discovery mechanism to convert the message payload
	<custom-transformer>	Allows you to create a custom transformer
	<message-properties-transformer>	A transformer that can add or delete message properties
	<no-action-transformer>	A transformer that does nothing
	<base64-encoder-transformer>	Transforms a string or byte array to base64
	<base64-decoder-transformer>	Transforms a base64 message to an array of bytes
	<xml-entity-encoder-transformer>	A transformer that encodes a string using XML entities
	<xml-entity-decoder-transformer>	A transformer that decodes a string containing XML entities
	<gzip-compress-transformer>	A transformer that compresses a byte array using gzip
	<gzip-uncompress-transformer>	A transformer that uncompresses a byte array using gzip
	 <byte-array-to-hex-string-transformer>	A transformer that converts a byte array to a string of hexadecimal digits
	 <hex-string-to-byte-array-transformer>	A transformer that converts a string of hexadecimal digits to a byte array
	 <byte-array-to-object-transformer>	A transformer that converts a byte array to an object
	 <object-to-byte-array-transformer>	A transformer that serializes all objects
	<object-to-string-transformer>	A transformer that gives a human-readable description of various types
	 <byte-array-to-serializable-transformer>	A transformer that converts a byte array to an object (deserializing the object)
	 <serializable-to-byte-array-transformer>	A transformer that converts an object to a byte array (serializing the object)
	 <byte-array-to-string-transformer>	A transformer that converts a byte array to a string
	 <string-to-byte-array-transformer>	A transformer that converts a string to a byte array
	<encrypt-transformer>	A transformer that encrypts a message
	<decrypt-transformer>	A transformer that decrypts a message
	<expression-transformer>	A transformer that evaluates one or more expressions on the current event
	<xml:xml-to-dom-transformer>	Transforms an XML message payload to an org.w3c.dom.Document
	<xml:xml-to-object-transformer>	Converts XML to Java bean graphs using Xstream
	<xml:xslt-transformer>	Transformer that uses XSLT to transform the message payload


                    

                

                
                    Section 5

                    Mule Filters

                    
                        Mule provides a set of default filters you can use to determine whether a message should be sent to a destination or whether it's read from a destination. Defining a filter works in the same manner as defining a transformer. You can define them globally and reference them from an endpoint.

<regex-filter name="regex" pattern="(^my)(.*)(txt$
  )"/>
<custom-filter name="custom" class="dzone.
  CustomFilter"/>
....
<file:inbound-endpoint name="example-in"
  path="work/example/in-1">
        <filter ref="regex"/>
</file:inbound-endpoint>
<file:inbound-endpoint name="example-in-2"
  path="work/example/in-2">
        <payload-type-filter expectedType="java.
         lang.String"/>
</file:inbound-endpoint>

In the previous example the message will only be received if it passes the filter. Mule also provides a set of logical filters which you can use to combine filters using NOT, AND and OR semantics.

<not-filter>
  <filter ref=”custom”/>
</not-filter>
<and-filter>
<payload-type-filter expectedType="java.lang.
   String"/>
  <filter ref="regex"/>
</and-filter>
<or-filter>
<payload-type-filter expectedType="java.lang.
    String"/>
  <payload-type-filter expectedType="java.lang.
    StringBuffer"/>
</or-filter>

Available Filters
The following table shows an overview of all the filters from the core and the XML schema. Note that certain transports have their own custom filters you can use.
	Name	Description
	<not-filter>	Invert the enclosed filter
	<and-filter>	Return true only if all the enclosed filters return true
	<or-filter>	Return true if any of the enclosed filters returns true
	<wildcard-filter>	Matches String messages against a number of wildcards. For example order.* would match order.line, order.total etc.
	<expression-filter>	A filter that evaluates whether a specific expression is valid
	<regex-filter>	A filter that matches the message against a regular expression
	<exception-type-filter>	A filter that matches the type of an exception
	<payload-type-filter>	A filter that matches whether the payload is of the correct class
	<custom-filter>	Allows you to implement your own custom filter
	<xml:is-xml-filter>	Checks whether the message is an XML message
	<xml:jxpath-filter>	Checks the message against an XPath expression using JXPath
	<xml:jaxen-filter>	Checks the message against an XPath expression using Jaxen


                    

                

                
                    Section 6

                    Mule Routers

                    
                        Routers are used in Mule to determine how messages are received by a component and to where they are sent after the component has processed them. Mule implements most of the patterns from the Enterprise Integration Patterns book (Addison-Wesley), and for most uses the same names. We have inbound routers and outbound routers. In this section, we'll first look at the inbound routers, how to configure them, and which ones are available. After that, we'll look at the outbound routers and do the same thing. First let's look at how to configure an inbound router.

<inbound>
   <file:inbound-endpoint path="work/test/in"/>
   <idempotent-secure-hash-receiver-router/>
</inbound>

You define the inbound router on the inbound element in the Mule service configuration. This means that every message that is received on any of the inbound endpoints is processed by the inbound router, before it's processed by the configured component.
Available Inbound Routers
	Name	Description
	<collection-aggregator-router>	Configures a Collection Response Router. This will return a MuleMessageCollection message type that will contain all messages received for each correlation group.
	 <custom-correlation-aggregator-router>	Allows you to create a custom correlation implementation.
	<custom-inbound-router>	With this element you can configure your own custom router.
	<forwarding-router>	Forwards a message directly to the outbound router without invoking the component.
	<idempotent-receiver-router>	This router makes sure that only unique messages are received. This is done by checking the unique message ID of the message.
	 <idempotent-secure-hash-receiver-router>	This router generates a hash of the message and uses that to determine whether a message has already been received.
	 <message-chunking-aggregator-router>	Combines two or more messages into a single message by matching messages with a given Correlation ID
	<selective-consumer-router>	Applies one or more filters to the incoming message. If the filters match, the message is forwarded to the component.
	<wire-tap-router>	This router allows you to send a copy of a specific message to a certain destination.

Outbound routers are configured on the outbound element:

<outbound>
  <static-recipient-list-router>
    <file:outbound-endpoint path="work/example/
     out" />
    <vm:outbound-endpoint path="example.out" />
  </static-recipient-list-router>
</outbound>

In this example we define an outbound router on the outbound element, and defined a static-recipient-list-router which sends the message that is received from the component to all the specified endpoints.
Available Outbound Routers
	Name	Description
	pass-through-router	This router always matches and simply sends or dispatches the message via the endpoint that is configured.

Available Outbound Routers, Continued
	Name	Description
	filtering-router	Uses filters to determine whether the message matches a particular criteria, and if so, will route the message to the endpoint configured on the router.
	template-endpoint-router	Allows endpoints to be altered at runtime based on properties set on the current message, or fallback values, set on the endpoint properties.
	chaining-router	Sends the message through multiple endpoints using the result of the first invocation as the input for the next.
	exception-based-router	Sends a message over an endpoint by selecting the first endpoint that can connect to the transport.
	multicasting-router	Sends the same message over multiple endpoints.
	endpoint-selector-router	Selects the outgoing endpoint based on the evaluation of an expression.
	list-message-splitter-router	Accepts a list of objects that will be routed to different endpoints. The actual endpoint used for each object in the list is determined by a filter configured on the endpoint itself.
	expression-splitter-router	Splits the message based on an expression. The expression must return one or more message parts in order to be effective.
	message-chunking-router	Allows you to split a single message into a number of fixed-length messages that will all be routed to the same endpoint.
	static-recipient-list-router	Sends the same message to multiple endpoints.
	expression-recipient-list-router	Sends the same message to multiple endpoints. The destination is determined based on the evaluation of an expression.
	custom-outbound-router	This router allows you to define your own custom outbound router.

So far we've seen all the various parts that make up a Mule service except the component which contains the business logic. For this, Mule provides a number of options.

 
 Reuse existing spring configurations 
 
 Since Mule is based on Spring it's very easy to reuse your existing spring beans. If you've already got an applicationcontext, and want to reuse those beans from Mule, you can very easily import them. All you have to do is declare the spring namespace, and add the following to your configuration: <spring:import resource="applicationContext.xml"/>. Now you can use all the beans defined in that file directly in Mule. 


                    

                

                
                    Section 7

                    Mule Comments

                    
                        There are a number of different ways to configure Mule components. Here, we'll show you, and also explain how Mule determines which method to call on your component. Mule provides two types of elements to use in your configuration to specify the component you want to use. The first one is the <component> element: <component class="dzone.Reverser"/>
If you use this configuration, Mule will create a new instance of this class for each request which is received. You can also configure Mule to create objects that can be pooled. For this, don't use the <component> element, but use the <pooled-component> element: <pooled-component class="dzone.Reverser"/>
In the previous examples we directly specified the class as an attribute on the elements. We can also use a different way to specify the implementation of the component. You can do this by using any of the following elements inside the <component> or the <pooled-component> element:
Mule Components, Continued

<component class>
  <prototype-object class="dzone.Reverser"/>
</component>
<component class>
  <singleton-object class="dzone.Reverser"/>
</component>
<component class>
  <spring-object name="springBean"/>
</component>

The first two of these elements allow you to specify whether you want a new object for each message (the <propotype-object> element), or whether you want to create an object to be a singleton (<singleton-object> element), and reused for all the messages. The final option you can use to specify the implementation of the component is the <spring-object> element. Here you can directly reference a spring-bean from the application context.

                    

                

                
                    Section 8

                    Mule Entry Point Resolving

                    
                        One thing we haven't discussed yet is how Mule can determine which method to call on your component. Your component often is just a simple spring bean or POJO, which has multiple methods. The default configuration for Mule is to use a set of entry point resolvers to determine which method to call on your bean. Mule uses the following steps to determine which method to invoke on your POJO.
	1.	If a property with the name “method” is specified, the value of that property is used to determine the method to invoke on your component. So if you set this (message) property to helloWorld, Mule will look for a method with that name on your bean. This makes use of the MethodHeaderPropertyEntryPointResolver.
	2.	Mule provides an interface, org.mule.api.lifecycle.Callable, you can implement. If Mule finds this interface on your POJO it will invoke the onCall() method of this interface, when a message is received for this component. This uses the CallableEntryPointResolver.
	3.	If there is a transformer configured, Mule will use the return type of this transformer to try and determine if there is a method which accepts this type. If this is found Mule will invoke that method. This uses the ReflectionEntryPointResolver.
	4.	If there is still no unique match Mule will check the type of the payload to see if that matches any of the methods in the bean. This also uses the ReflectionEntryPointResolver.

If the previous steps don't result in a single method, Mule will throw an exception. Beside the ones already mentioned, you can configure your own set of entry point resolvers, should the default configuration be insufficient. The following example shows a custom configuration, which you can configure on the model or on a component.

<entry-point-resolver-set>
  <array-entry-point-resolver
      acceptVoidMethods="true" transformFirst="true"/>
  <callable-entry-point-resolver/>
  <method-entry-point-resolver
      acceptVoidMethods="true"/>
</entry-point-resolver-set>

If you create a custom entry-point resolver, you can easily add to this entry point resolver set.
Entry Point Resolvers
The following table shows an overview of the entry point resolvers which are provided by Mule.
	Name	Description
	<callable-entry-point-resolver>	An entry point resolver for components that implement the Callable interface.
	<custom-entry-point-resolver>	Use to create your own custom implementation.
	<property-entry-point-resolver>	Uses a property to determine which method on your component to invoke.
	<method-entry-point-resolver>	This uses the “method” property to determine which method to invoke.
	<reflection-entry-point-resolver>	Tries to determine the method to invoke based on the payload of the message.
	<array-entry-point-resolver>	Checks whether there is a method available which takes a single array as its parameter.
	 <no-arguments-entry-point-resolver>	Calls a method which has no arguments.

Resources
	Open Source Mule site	http://www.mulesource.org
	Commercial Mule site	
	Open Source ESB in action website	


                    

                


            
                
                    Like This Refcard? Read More From DZone

                    
                            
                                
                                    
                                
                                
                                    DZone Article

                                    Composite Source in Mule

                                
                            

                            
                                
                                    
                                
                                
                                    DZone Article

                                    Mule Message Encryption With JCE Keystore

                                
                            

                            
                                
                                    
                                
                                
                                    DZone Article

                                    Mule Message Encryption With JCE

                                
                            

                            
                                
                                    
                                
                                
                                    DZone Article

                                    Performing Advanced Facebook Event Data Analysis With a Vector Database

                                
                            


                            
                                
                                    
                                
                                
                                    Free DZone Refcard

                                    GraphQL Essentials

                                
                            

                            
                                
                                    
                                
                                
                                    Free DZone Refcard

                                    API Integration Patterns

                                
                            

                            
                                
                                    
                                
                                
                                    Free DZone Refcard

                                    Getting Started With Cross-Platform Heterogeneous Computing

                                
                            

                            
                                
                                    
                                
                                
                                    Free DZone Refcard

                                    Introduction to Digital Asset Management via APIs

                                
                            

                    

                

            

        

    






    
        
            	
                    
                        
                    
                
	
                    
                        
                    
                
	
                    
                        
                    
                
	
                    
                        
                    
                


        


        
            
                ABOUT US

                	About DZone
	Send feedback
	Careers
	Sitemap


            

            
                ADVERTISE

                	Advertise with DZone


            

        


        
            
                CONTRIBUTE ON DZONE

                	Article Submission Guidelines
	Become a Contributor
	Core Program
	Visit the Writers' Zone



                LEGAL

                	Terms of Service
	Privacy Policy


            

            
                CONTACT US

                	3343 Perimeter Hill Drive
	Suite 100
	Nashville, TN 37211
	support@dzone.com


            

        

    


    

        Let's be friends:

        
            	
                    
                        
                    
                
	
                    
                        
                    
                
	
                    
                        
                    
                
	
                    
                        
                    
                


        

    















    
        



    
        
            {{ parent.title || parent.header.title}}

            {{ parent.tldr }}

            {{ parent.linkDescription }}

            {{ parent.urlSource.name }}
        

    

    
        
            
                
            
        

        
            by
            

            
                
            


            
                
            



            
                
                CORE
            

        

        
            · {{ parent.articleDate | date:'MMM. dd, yyyy' }} {{ parent.linkDate | date:'MMM. dd, yyyy' }}
        

    

    
        
            
            
        


        
            
        


        


        
            Tweet
        


        
            
                 {{ parent.views }} ViewsClicks
            


            
                
                    
                    	Edit
	Delete
	{{ parent.isLocked ? 'Enable' : 'Disable' }} comments
	
                            {{ parent.isLimited ? 'Remove comment limits' : 'Enable moderated comments' }}
                        


                

            

        

    

    
       

    




    







    

    
        
    




                
            
    














    
